
Robust attributes control charts (racc) in the rQCC

package

Chanseok Park* and Min Wang�

December 2022

Abstract

The g control charts based on the geometric distribution are widely used in

many engineering applications to monitor the number of conforming cases be-

tween the two consecutive appearances of nonconformities. However, conventional

g charts are based on the maximum likelihood and minimum variance unbiased

estimators which are very sensitive to outliers. Thus, they could result in severe

bias for obtaining the control limits of the charts. In this note, we provide a brief

summary of robust g control charts and a description of how they are constructed

using the racc function in the R package rQCC.

In addition, we also provide

1 Geometric distribution and its parameter estimation

Denote Yi (i = 1, 2, . . . , n) to be the number of normal cases (or failures) before observing
the �rst adverse case (or success) in a series of independent Bernoulli trials where its
success probability is given by p. Considering the location parameter a, the probability
mass function (pmf) of the geometric distribution is given by

f(y) = P (Yi = y) = p(1− p)y−a (1)

and its corresponding cumulative distribution function (cdf) is

F (y) = P (Yi ≤ y) = 1− (1− p)y+1−a, (2)

where y = a, a + 1, . . .. In general, the location shift a is the known minimum possible
number of events (usually a = 0, 1). Then the mean and variance of Yi are given by

µ = E(Yi) =
1− p

p
+ a and σ2 = Var(Yi) =

1− p

p2
,
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respectively.
In many practical applications, the process parameter p is unknown and needs to be

estimated. By using the maximum likelihood (ML) method, we have

p̂ML =
1

Ȳ − a+ 1
, (3)

where Ȳ =
∑n

i=1 Yi/n. Note that the Method-of-Moments (MM) estimator yields the
same estimator for p as the ML estimator. One can also use the minimum variance
unbiased (MVU) estimator proposed by [1], which is given by

p̂B =
1− 1/n

Ȳ − a+ 1
. (4)

However, it is shown to be biased. For more details, see [2]. The correct MVU estimator
is given by

p̂MVU =
1− 1/n

Ȳ − a+ 1− 1/n
. (5)

For more details on the conventional g control charts based on the above estimators,
one can refer to the vignette below.

> vignette("acc", package="rQCC")

Here we introduce two robust estimators for p developed by [3], which are based on
the memoryless property of the geometric distribution and truncation of an empirical
distribution.

First, we provide a robust estimator based on the memoryless property. It is imme-
diate from the memoryless property that we have

P (X > s+ t) = P (X > s) · P (X > t). (6)

It should be noted that the above equation works only when X has the pmf of the form
f(x) = p(1− p)x−1. Care should be taken to use this formula for the geometric random
variable Y with location shift a, whose pmf is given by f(y) = p(1 − p)y−a. Note that
X = Y − a + 1 is the geometric random variable with the pmf f(x) = p(1 − p)x−1

regardless of the value of a. Thus, by substituting X = Y − a+ 1 into (6), we obtain

P (Y > s+ t+ a− 1) = P (Y > s+ a− 1) · P (Y > t+ a− 1), (7)

which works with any location shift a. Simplifying the arguments on the right-hand side
of (7) with s← s+ a− 1 and t← t+ a− 1, we have

P (Y > s+ t− a+ 1) = P (Y > s) · P (Y > t). (8)

Rewriting (8) using (2), we have

1− F (s+ t− a+ 1) =
{
1− F (s)

}
·
{
1− F (t)

}
,
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which results in
F (s+ t− a+ 1)− F (t)

F (s)
= 1− F (t).

Using F (t) = 1− (1− t)t+1−a, we have

F̂ (s+ t− a+ 1)− F̂ (t)

F̂ (s)
= (1− p̂)t+1−a. (9)

Here F̂ is an estimator of F given by

F̂ (t) =
1

n

n∑
i=1

I(Yi ≤ t),

where I(·) is an indicator function. Solving (9) for p̂, we have

p̂cdf = 1−

[
F̂ (s+ t− a+ 1)− F̂ (t)

F̂ (s)

]1/(t+1−a)

. (10)

The estimator in (10) uses the empirical cdf, which could discard large outliers by
selecting appropriate values of t and s. We recommend the choices of t and s such
that F̂ (s + t − a + 1) and F̂ (t) approximately cover γ and γ/2 fractions of the data,
respectively. Then we have t = [qγ/2] and s = [qγ − qγ/2 + a− 1].

Next, another method for estimating p is based on the truncated geometric distribu-
tion with the pmf given by

f(y) =
p(1− p)y−a

1− (1− p)d−a+1
,

where y = a, a + 1, . . . , d. The ML estimator of this truncated distribution is not in a
closed-form expression, but it is unique under a certain condition. For more details, see
[4]. The closed-form MM estimator, which is quite comparable to the ML estimator, is
provided in [5], but it works only for the case of location shift a = 1. We can modify
this MM estimator so that it works with any location shift and it is given by

p̂t =
(a+ d)− 2Ȳ

(Ȳ − a+ 1)(d− Ȳ )− S2
, (11)

where S2 = 1
n

∑n
i=1(Yi − Ȳ )2. Note that the value of the above MM estimator can

be smaller than zero or larger than one. For the case that p̂t ≥ 1, we set up p̂t = 1
which implies that Y degenerates at Y = a. For the case that p̂t = 0, Y degenerates
at Y = ∞. Note that Y should always be between a and d with the truncation at d.
Thus, we should avoid degenerating at Y = ∞ with p̂t = 0. This degeneration occurs
if the value of d is too small. Thus, by increasing the value of d we can avoid this case.
The condition (a+ d)− 2Ȳ > 0 guarantees the existence of the MM estimator over the
open interval (0, 1). For more details, see [4]. Thus, with d > 2Ȳ − a, we can avoid
degenerating at Y =∞. The minimum positive integer value of d satisfying d > 2Ȳ − a
is given by d∗ = ⌊2Ȳ − a⌋+ 1, where ⌊·⌋ is a �oor function.
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2 Construction of the robust g control charts

The g chart (about the total number of events) with the sample size nk has the following
control limits

UCL(p) = nk

(
1− p

p
+ a

)
+ g

√
nk(1− p)

p2
,

CL(p) = nk

(
1− p

p
+ a

)
, (12)

LCL(p) = nk

(
1− p

p
+ a

)
− g

√
nk(1− p)

p2
.

Note that the smallest possible value of the total number of events is nka. Thus, if
LCL < nka in the above limit, we set up LCL = nka.

The h chart (about the average number of events) with nk has the following control
limits.

UCL(p) =
1− p

p
+ a+ g

√
1− p

nkp2
,

CL(p) =
1− p

p
+ a, (13)

LCL(p) =
1− p

p
+ a− g

√
1− p

nkp2
.

Note that the smallest possible value of the average number of events is a. Thus, if
LCL < a in the above limit, we set up LCL = a.

Since the parameter p is unknown in practice, we need to estimate it. Suppose that
there are m samples (subgroups) from the experiments and the sample size of the ith
sample is ni. Let Xij be the number of independent Bernoulli trials (events) until the
appearance of the �rst nonconforming event in the ith sample, where i = 1, 2, . . . ,m
and j = 1, 2, . . . , ni. Then Xij 's are independent and identically distributed geometric
random variables with location shift a and Bernoulli probability p. Then the estimators,
p̂t and p̂cdf , with these samples are easily obtained from (10) and (11), given by

p̂cdf = 1−

[
F̂ (s+ t− a+ 1)− F̂ (t)

F̂ (s)

]1/(t+1−a)

and

p̂t =
(a+ d)− 2 ¯̄X

( ¯̄X − a+ 1)(d− ¯̄X)− S2
,

where F̂ (t) = 1
N

∑m
i=1

∑ni

j=1 I(Xij ≤ t), ¯̄X =
∑m

i=1

∑ni

j=1 Xij/N with N =
∑m

i=1 ni,

and S2 = 1
N

∑m
i=1

∑ni

j=1(Xij − ¯̄X)2. For p̂cdf , t = [qγ/2] and s = [qγ − qγ/2 + a− 1] are
obtained from all the m samples.
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For a given robust estimator p̂ = p̂cdf or p̂ = p̂t we can obtain the g robust control
limits by plugging p̂ into the control limits in (12) or (13). As an illustration, the robust
control limits of the g or h chart are easily obtained as follows.

> library(rQCC)

> x1 = c(11, 2, 8, 2, 4)

> x2 = c(1, 1, 11, 2, 1)

> x3 = c(1, 7, 1)

> x4 = c(5, 1, 3, 6, 5)

> x5 = c(13, 2, 3, 3)

> x6 = c(3, 2, 6, 1, 5)

> x7 = c(2, 2, 8, 3, 1)

> x8 = c(1, 3, 4, 6, 5)

> x9 = c(2, 8, 1, 1, 4)

> data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9)

> result = racc(data, gamma=0.9, type="g", location=1, gEstimator="cdf",

nk=5)

> summary(result)

> plot(result)

3 Construction of the robust exponential and Weibull

t control charts

3.1 Robust exponential t control chart

The cdf of the exponential distribution is given by

F (x) = 1− e−x/θ,

where θ > 0. Let x(i) be the values of the order statistics such that x(1) ≤ x(2) ≤ · · · ≤
x(n). For notational convenience, we denote pi = F (x(i)). Then the exponential cdf can
be linearized as

− log(1− pi) · θ = x(i),

where i = 1, · · · , n. We propose a robust estimate of θ as follows:

θ̂ = median
1≤i≤n

{
−

x(i)

log(1− pi)

}
. (14)

Then, similar to the conventional exponential t chart, its robust version is constructed
as follows:

LCL = {− log(1− α/2)} · θ̂,

CL = {− log(1/2)} · θ̂,

UCL = {− log(α/2)} · θ̂,
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where α/2 = Φ(−g) and θ̂ is obtained by (14). For more details on the conventional
exponential t control chart, one can refer to vignette("acc", package="rQCC"). The
control limits of the exponential t chart are obtained as follows.

> racc(x, type="t")

3.2 Robust Weibull t control chart

The cdf of the Weibull distribution is given by

F (x) = 1− exp

{
−
(x
θ

)β
}
,

where θ > 0 and β > 0 represent the scale and shape parameters, respectively. Let x(i)

be the values of the order statistics such that x(1) ≤ x(2) ≤ · · · ≤ x(n). For notational
convenience, we denote pi = F (x(i)). Then pi can be easily estimated by using the
plotting position, an increasing step function jumping at x(i). In this rQCC package, we
use the ppoints() function to estimate pi = F (x(i)), which is based on Blom [6]. Then
it is given by

pi =


j − 3/8

n+ 1/4
for n ≤ 10

j − 1/2

n
for n ≥ 11

, . (15)

The Weibull cdf can be linearized as

log (− log(1− pi)) = −β log θ + β log x(i), (16)

where i = 1, · · · , n. By denoting y∗i = log (− log(1− pi)), x
∗
i = log x(i), β

∗
0 = −β log θ,

and β∗
1 = β, we can rewrite (16) as

y∗i = β∗
0 + β∗

1x
∗
i , i = 1, · · · , n.

Then, based on observations {(x∗
1, y

∗
2), · · · (x∗

n, y
∗
n)}, we can easily calculate the estimate

of β∗
1 , denoted by β̂∗

1 , by using the repeated median estimate [7], which is given by

β̂∗
1 = median

1≤i≤n
median

j ̸=i

y∗i − y∗j
x∗
i − x∗

j

.

After β̂∗
1 is obtained, we can estimate β̂∗

0 easily using

β̂∗
0 = median

1≤i≤n

(
y∗i − β̂∗

1x
∗
i

)
.

After β̂∗
0 and β̂∗

1 are obtained, we obtain the original parameter estimates by reparametriz-
ing as

β̂ = β̂∗
1 and θ̂ = e−β̂∗

0/β̂
∗
1 . (17)
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Then, similar to the conventional Weibull t chart, its robust version is constructed
as follows:

LCL = {− log(1− α/2)}1/β̂ · θ̂,

CL = {− log(1/2)}1/β̂ · θ̂,

UCL = {− log(α/2)}1/β̂ · θ̂,

where β̂ and θ̂ are from (17). For more details on the conventional Weibull t control
chart, one can refer to vignette("acc", package="rQCC"). The control limits of the
Weibull t chart are obtained as follows.

> racc(x, type="t", tModel="W")
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